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Cells in circulatory systems adhere through a competition between molecular in-
teractions and colloidal repulsion, while the cells arbitrarily deform in the presence
of external fluid forces. The complex coupling of the forces involved, the disparate
length scales at which they act, and uncertainties in the mechanics of cell defor-
mation have complicated the study of cell adhesion. To address these difficulties,
a multi-fluid, front-tracking method with staggered, adaptively refined meshes has
been developed. As a tool to study cell mechanics, the program allows the incor-
poration and testing of different mechanical models of the cell without significant
changes inthe setup. As atool to study cell adhesion, the method models the coupling
of the relevant forces resolving the disparate length scales involved. The method was
validated by simulating various test cases, and the results were found to agree well
with analytical and other numerical solutions. The capabilities of the method are
demonstrated with the simulation of a common cell-mechanics experiment (a mi-
cropipet assay) and a common physiological situation for cell adhesion (the adhesion
of two cells under shear flow). © 1998 Academic Press

Key Words:cell mechanics; cell detachment; incompressible Navier—Stokes; mi-
cropipet; micropipette; drops; adaptive refinement; immersed boundary method.

1. INTRODUCTION

The transient and specific adhesion of cells is crucial to numerous physiological proce
including cell-mediated immunity, embryogenesis, wound healing, and the spread of cal
Understanding what determines the specificity, strength, and occurrence of cell adhe
could lead to the therapeutic treatment of many disorders, as well as the accelerati
advances in biotechnological processes. Already, there is much pharmacological e
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aimed at controlling cell adhesion at a molecular level [1]. In addition, the developm
of manufactured devices for use in the human body—such as synthetic vascular gra
replace diseased or damaged segments of arteries, cardiac valves, fully artificial heart
other artificial organs—has provided both the need and the opportunity to determine
forces present in cell adhesion under flow [2].

Previous research has demonstrated that cell adhesion is governed by the coupli
several physical and biochemical events that occur at drastically different length scale:
the scale of the cell diameter (0 m), the cells deform while immersed in a stream of fluic
At the gap near the area of contastl0 nm), molecules diffuse and react while colloida
forces act to repel the cells. The complex coupling of these events and the disparate |
scales at which they occur have complicated both experimental and mathematical stud
celladhesion. Experimental work ranges from laminar flow chamber and micromanipula
assays aimed at determining the occurrence of adhesion and at measuring the forces re
to disrupt it, to molecular biology techniques used to characterize the surface molec
involved in the binding. Assays which relate molecular and colloidal properties to the for
required to disrupt adhesion are difficult and scarce. A mathematical relationship betv
these properties is desirable. Most mathematical models of cell adhesion are based ¢
equilibrium models. In one, adhesion is considered to be a competition between the sp
binding of surface molecules and the non-specific repulsion between the cells [3]; in
other, a relationship between the mechanical properties of a portion of the cell memb
and adhesive bonds was developed [4, 5]. These models have been combined and ex
to account for some kinetic phenomena [6—8] and for the influence of external flow [9, :
Unfortunately, the mathematical work so far treats subsets of the relevant events in
adhesion, ignoring others that are equally important. For example, one model [9] inclt
all binding dynamics and hydrodynamic flow but neglects cell deformation, while anot
model [6] includes both binding dynamics and mechanical deformation but considers
a portion of the cell membrane.

Further difficulties arise from the fact that the mechanical behavior of most cells
not well defined and that it varies with cell type and cell status (e.g., whether the ce
activated or not). Cell deformation affects studies of adhesion by helping determine the
and geometry of the area of contact, by altering the flow field surrounding the cells, an
absorbing some of the force intended to disrupt adhesion. Although cellular deforma
has been studied extensively (e.g., [11-13]), the constitutive relationship between stres
deformation for most cells is still elusive. The common procedure for testing hypothe
for such a relationship requires that the relationship be establaspeidri and that a new
analytical setup be developed for each test.

A computational model could accommodate alternative models for the cell mechatr
as well as provide the coupling of the relevant events in cell adhesion. This approach
used by Fogelson [14] to simulate platelet aggregation under flow. He modeled the plat
as two-dimensional fluid bodies enclosed by an infinitesimally thin elastic membrane
surrounded by a fluid of identical properties. However, he made no provisions for vary
the properties of the fluid inside the cell with respect to the surrounding fluid, limiting t
alternatives for mechanical models. Also, while Fogelson’s model includes the activatio
platelets that precedes their aggregation, the adhesive interactions are treated with a
model which ignores the different length scales.

This paper describes the implementation of a method that incorporates the most rel
events involved in the adhesion of cells under flow. Extending Fogelson’s idea, the bioloc
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cells are modeled as composites of incompressible, Newtonian fluid bodies enclose
membranes. Alternative models for the overall deformation of the cell can be constru
by varying the properties of the internal fluids, by varying the constitutive equation ¢
material parameters for the mechanics of the membranes, and by varying the numb
internal bodies (which represent the nucleus or other organelles inside the cell).

A multi-fluid program has been developed to describe the behavior of such cells
the encompassing fluid in both two-dimensional and axisymmetric geometries. The inc
pressible Navier—Stokes equations are discretized using a finite-volume formulation
semi-implicit pressure correction method. The interfaces are tracked explicitly and
cretized independently of the background mesh using the Eulerian—Lagrangian me
developed by Univerdi and Tryggvason [15]. In this method, all membrane proces
are computed on the interfaces and the resultant force is distributed to the backgr
mesh. This separate treatment, as well as the lower dimensionality of the membr:
simplifies the alteration of their mechanical properties and the inclusion of additio
processes. To account for the disparate length scales of the problem, the fluid €
tions are solved on unstructured Cartesian grids that refine adaptively near the inter
[16]. The unstructured meshes allow the adaptation to be performed easily and efficie
while the Cartesian elements allow a simpler discretization of the equations, avoiding
many complications introduced by the transformations usually needed on non-orthog
grids.

The combination of front-tracking and adaptive refinement has been used by othe
searchers to study problems from different fields. For example, a front-tracking met
in which a composite grid is formed by the overlay of the interface mesh on the ba
ground Cartesian mesh has been combined with adaptive refinement to study uns
inviscid flows with a collocated variable arrangement [16] and, independently, incompr
ible viscous flows with a staggered variable arrangement [17]. A variation of the level:
approach [18] has been combined with a similar Cartesian adaptive-refinement metho
ing a collocated variable arrangement to study the motion of drops in an incompres:
Newtonian fluid [19, 20]. Level-set methods have also been used with a different typ
Cartesian-adaptive mesh to study incompressible two-phase flows [21]. Our work is
first report of adaptively refined, staggered meshes used in conjunction with an exf
interface tracking in which the interfaces are not part of the background grid. Although
motivation for our work is the adhesion of deformable cells, the method applies to m
other physical systems such as the interactions of drops and bubbles and the swimmi
microorganisms.

In the following section, the governing equations that describe the behavior of ince
pressible, Newtonian fluids with surface forces are presented. Next, the implementatic
the numerical method is described. The grid generation, the front tracking, and the
cretization of the equations on a staggered mesh are described in Sections 3.1-3.4,
the boundary conditions are discussed in Section 3.5. The discussion and derivatio
these sections are carried out in two dimensions, and the extension of the algorithm t
isymmetric geometries is presented in Section 3.6. Finally, Section 4 presents the resu
several simulations: the deformation a 2-D drop under shear and the oscillations of a
are used to validate the program, while the simulation of a micropipet assay (a com
technigue used to study cell mechanics) and two cells adhering under shear are us
demonstrate the capabilities of the method.
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2. GOVERNING EQUATIONS

The fluids modeled in this work (e.g., the cytosol and extracellular fluids such as plas
media or buffers) are incompressible and will be assumed to remain isothermal. The
erning equations that describe the behavior of such fluids are the laws of conservatic
mass,

fa.ﬁdszo, 1)
S

and momentum,

2/// pﬁdV—l—}gpﬁ(ﬁ-ﬁ)dS:—%plzﬂdS—]{t:-ﬁdS—k// fydv, (2
ot v S S S \

wheret represents time, while, p, and p are the velocity vector, the pressure, and th
density of the fluid, respectivteT.is the identity matrixV is the volume occupied by the
fluid, Sis the surface area formed by the boundary of this volume faedhe outward-
pointing unit vector, normal t&. fy is the sum of the forces acting on the fluid; although |
has the form of a body force, it also includes the effect of the surface forces due to the
tracking method used (as will be discussed in Section 3.8)the stress tensor, which for
a Newtonian fluid in two dimensions is
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wherep is the dynamic viscosity of the fluid, andandv are the horizontal and vertical
components of the velocity, respectively.

3. NUMERICAL METHOD

3.1. Grid Generation

The grid-generation code developed by Baygtil.[16] is used to generate the grids for
solving the discretized fluid equations. The code uses a quadtree-based algorithmto ge
Cartesian meshes with adaptive refinement and was originally developed for compres:
inviscid flows. A quadtree structure begins with a root cell which is said to be at refinerr
level 1. This root cell is refined by creating four children of equal size, which are said tc
at refinement level 2. Each child can in turn be refined, increasing the refinement leve
one, until the desired grid is generated. All cells have a pointer to their parents and or
each of their four children, if they exist. From this tree structure most geometric informat
as well as the connectivity of the cells can be determined. The state variables are stol
the leaf cells (those at the bottom of the tree), and all flow-solver computations are ¢
using these cells. For more details on the data structure see De Zeeuw [22] or Bayyuk

The creation of the grid can be summarized in four steps: (i) a uniform Cartesian n
is generated, (ii) points are distributed along each interface, (iii) the intersections betv
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the interface(s) and the uniform Cartesian mesh are computed, and (iv) the Cartesian
is refined appropriately. At each time step, each interface can deform and the backgr
mesh is adapted accordingly. Effectively, the interfaces move through a stationary grid,
this provides a very efficient method to generate grids for arbitrarily deforming bodies.
more details on this procedure see Baywtil.[16] or Bayyuk [23].

For the problems studied in this work, cells are refined using two criteria: intersectior
the interface, and proximity either of adjacent interfaces or of an interface and wall. The
provides a method to control the sharpness of the interface, while the second provide
resolution needed to study interfacial phenomena efficiently. Additional refinement crit
based on the gradient of the state variables could be used to achieve accuracy in
complicated flows (e.g., [16, 24]). In the work of Bayyuk and Powell, the interfaces appe
the background grid, forming irregularly cut cells. In this study, the complications introdu
by these cut cells are avoided by keeping the interfaces separate from the background
and distributing the quantities carried by the interface to points in the Cartesian mesh.
implementation of the distribution of these quantities is the subject of Section 3.3.

3.2. Implementation of the Staggered Variable Arrangement

A diagram of a staggered, refined mesh is shown in Fig. 1. The pressure, density.
viscosity are located at the cell centroids; the horizontal component of the velocity is ple
at the center of the vertical cell faces; and the vertical component of the velocity is loc:
at the center of the horizontal cell faces.

The refinement has been restricted so that the refinement levels of neighboring cel
not differ by more than one. This restriction is effectively a smoothing of the grid and 1
only simplifies the implementation of the staggered mesh, but also prevents inaccur:
introduced by large size differences between adjacent cells [22]. With this restriction, ¢
face of a cell can have a maximum of two nodes. In order to accommodate the stagg
location of the unknowns into the quadtree data structures used in the grid generation
(which are cell-based), each cell is assigned the nodes at its east and north faces, alon
the node at its centroid. Hence, each cell contains five pointers to variables, and whel
a face has only one node (when the refinement level of the face neighbor is greater th
equal to that of the cell), one of the pointers is set to NULL.

3.3. Front Tracking

The method used to track the interfaces was originally developed by Peskin and McQ
[25] and was extended to fluids with different densities and viscosities by Univerdi
Tryggvason [15]. In this method, a moving, unstructured mesh is used to track the inter
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FIG. 2. Sketch of the discretization of the interface. The subsdrigpresents the segment numbeis
the coordinate along the interface, and the subscripts 0 and 1 are the endpoints of each segment numbel
counterclockwise manner.

and a stationary Cartesian mesh is used to solve the transport equations. The two mesl
kept separate, and information transfer is required from one mesh to another. This trans
as follows: (i) a resultant surface force is computed on the interface and must be distrik
to the Cartesian mesh; (ii) the velocity of the fluid is computed on the background m
and must be interpolated to the interface; and (iii) the location of the jumps in den:
and viscosity is determined by the interface and must be communicated to the backgr
mesh.

The discretization of a two-dimensional interface is sketched in Fig. 2. The coordin:
at the endpoints of each segment and the property variables at the centroids are store
membrane processes and properties are computed using this mesh and the effects
membrane on the fluid are transmitted through a resultant surface fogcEpr example,
at the interface between two fluids [26],

9(0€)
ds

Fs S ds. (4)
The discretization of this force on the interface mesh of Fig. 2 results in the followi
expression for each segment,

fg=(0€)i1— (0o (5)

where(c &) is the product of the surface force coefficient and a unit tangent vector at
endpoint of the segment. This product is computed by a linear interpolation of similar te
evaluated at the centroid of the two segments that share the endpoint (the surface te
coefficient is stored at that location, whereas the unit tangent vector is evaluated by fin
the vector connecting the endpoints in a counterclockwise manner and normalizing
the length of the segment).

The resultant force per unit surface element must be distributed to the Cartesian
and incorporated into Eq. (2) through the force teri, This is done by transforming
the surface force to a volume force using an area-weighted extrapolation. Since the |
is staggered, the component of the force acting in the horizontal direction is distribt
to theu-nodes (the nodes containing the horizontal component of the velocity), while
y component is distributed to thenodes. The procedure is as follows: (i) the quadtre
is searched to find the cell that encloses the midpoint of an element in the interface
by searching the neighbors of the cell just found, the four nodes closest to the midf
of the element are found; (iii) using a bilinear transformation, the quadrilateral formed
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FIG. 3. Distribution of the surface force: (a) Interface overlaid on the Cartesian mesh. The open cir
indicate theu-nodes, to which the.-component of the force is interpolated; the crosses markthedes, to
which they-component of the force is interpolated; and the filled square represents the midpoint of an elel
of the interface. (b) Quadrilaterals formed by theodes (top) and-nodes (bottom) which are used to compute
the fractional areas. (c) Mapping of the quadrilateral formed byithedes around the interface point to a square
with vertices [1, 1), (-1, 1), (-1, —1), (1, -1)].

these nodes is mapped to a unitary square where fractional areas are conm{pjtebse
fractional areas are used to distribute a component of the surface force to the four n
found in step (ii). This procedure is sketched in Fig. 3. The expression for the force per
fluid element assigned to eaaode is

o 1
(fv-l)k=vk(fs-l)iAk, (6)

wherei is a unit vector in the horizontal directiok,indicates each of the fowr-nodes
forming a quadrilateral around the midpoint of tlth element on the interfac¥ is the
size of the control volume around tkéh u-node, andAy is the fractional area associated
with thekth u-node(z‘k‘:l Ax = 1), as shown in Fig. 3c. A similar expression is used fc
they-component of the force. This distribution is performed for all interface elements, ¢
the contributions of different elements to the same node in the Cartesian mesh are ad

The local fluid velocity is interpolated to the endpoints of each interface segment us
an area-weighted interpolation which incorporates most of the features developed fo
distribution of the surface force described above. The expressions for the componer
the velocity at endpoint O of theh element are

4
Uio= Z Uk A (7)
k=1

! The actual fractional areas would require mapping back to the real space, but after some testing it was four
the areas in the transformed space are a very good approximation to the real ones for the quadrilaterals enco
in the meshes of this work. To avoid further complications in the setup and for efficiency, the fractional are:
the transformed space were used.
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4
vi,o=ZUjAj, (8)
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wherek refers to each of the four-nodes forming a quadrilateral around the endpoint, ar
j refers to the correspondingnodes (as sketched in Fig. 3b). The appropriate nodes of
Cartesian mesh and the fractional areas are found using the same method described
distribution of the surface force.

The density and viscosity in the computational cells which are not intersected by
front are assigned according to the fluid regime in which the cell lies. In intersected ¢
these variables are computed using an area-weighted average,

1 Ng+1 1

K= Net+ 1 .; {E(pLALJFpRAR)i} ©
1 Ng+1

R O (A AR | "

i=1

whereN is the number of cells neighboring célli = Ni + 1 refers to celk, Ay = (AL +
AR) is the total area of cell, and the subscripts and R represent the values at each sid
of the interface on thigh cell (if thei th cell is not intersected, eithéy, or Ar is zero). The
cell neighbors were included in the averaging as a form of smoothing to avoid sharp ju
in the density and viscosity, which can produce spurious spikes in the solution. This me
of reconstructing the density and viscosity takes advantage of the geometric informe
provided by the grid-generation code (the fluid or fluids that occupy a cell, and the ge
etry of the intersection) [23]. An alternative method for this reconstruction is describec
Refs. [15, 26].

The current implementation of the grid-generation code prohibits intersected boun
cells and cells intersected by more than two interfaces (this latter restriction will be lifte
future work). This is enforced by defining a contact threshold to be a distance 1.5 time:
side of a computational cell. The velocities of interfacial points that, at their new locati
would lie within a contact threshold of other interfaces or solid boundaries are adjusted
the following rules: (i) if a point will get within a contact threshold of a solid boundar
the component of its velocity normal to the boundary is set to zero; (ii) if two points (
separate interfaces) will get within a contact threshold of each other, the velocity of t
points is set to the average of the two. The first of these rules effectively imposes an inv
boundary condition for the solid wall one contact threshold away from the boundary.
second rule assumes that portions of the interfaces “collide” when the distance bet
them is equal to the contact threshold, that they “stick” together for one time step &
the collision, and that the portions colliding have equal mass. In most problems, tt
assumptions are justified since the velocity adjustments needed are typically very <
and the errors introduced decrease with the size of the mesh, the size of the segn
and the size of the time step. In cases in which many velocity adjustments are perfor!
these adjustments might significantly alter the volume of the bodies. One way to correc
problem is to communicate the velocity adjustments on the interface to the immersing flt
This can be done by including the force needed to displace the fluid between the unadj
and adjusted locations of each segment into the total surface fogd&qs. (4)—(6)).
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The number of interface points is computed automatically so that the size of each seg
on the interface is at most the length of a face of the smallest computational cell on
Cartesian grid. This guarantees that there is at least one interface point per cell. Ii
cases tried, the authors have found that the difference in the solution between one an
interface points per cell is small, and using more than two points does not affect the solt
significantly.

Since the points on the interface move independently of one another, special mea
must be taken to prevent two points from becoming unevenly spaced. This is accompli
simply by redistributing the points along the interface, while maintaining the total num
of segments constant. The quantities carried by the interface are adjusted as needec
redistribution is performed after several iterations (the exact number of iterations is prok
dependent).

3.4. Discretization of the Incompressible Navier—Stokes Equations

3.4.1. Finite-volume discretization.The following finite-volume discretization of
Egs. (1) and (2) is used,

> v-nAS=0 (11)
faces
(pvV)™ — (pvV)"
At

= - Z(F_conv' ﬁAS)n - Z(Epress' ﬁAS)n+l

faces faces
+0> (Fuise-NA9™ + (1 0) > (Fuise- A" + V,
faces faces

(12)

whereV is the size of the control volume Sis the size of a faceiis the outward normal to
the facep is a constanf0 < 6 < 1) used to control the degree of implicitness used for th
viscous terms; and the total flux has been divided into three components—convective fl
(Fcom,) pressure quxe(stresg and viscous quxeSFV.SC)—to facilitate the discussion in
the following section. These fluxes are defined as

I:=con = -,OUZ ,OUU]
v = 2
L puv  pv
= [ 0
Fpress: (F)) p} (13)
[ ) ou ou N v
- Hax oy T ax
Fvisc:: s
au n av 5 ov
Moy ™ ax Moy

whereu andv are thex- andy-components of the velocity vector, respectively.

Since the biological problems of interest occur at low Reynolds numbers, the convec
terms do not enforce a stringent stability constraint on the time step, and, by choo
0 > % in Eq. (12), the viscous terms are unconditionally stable. In the cases tried so far
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restriction on the time step has been due to the membrane forces. Therefore, the con

. . < AXp”+1>
At < minimum over all intersected cellx fu
is imposed on the time step, whefg is the magnitude of the force per unit volume define
in Eq. (6),AX is the length of the computational cetl,at the newest time level is defined
by Eqg. (9), anct is a safety factor. This is a CFL-like condition based on the accelerati
of the fluid due to the surface forces. This condition is designed to prevent any particl
fluid and any interface point from moving more than one cell length at each time step.
In the staggered mesh, the control volume used for conservation of mass is center
the cell centroid, the one for the conservation of momentum irxttligection is centered
at the east face, and the one for conservation of momentum ig-tlirection is centered
at the north face (Fig. 1). The size of the control volume [fas always the same as the
computational cell in whiclp is located, whereas the size of the control volume araund
or v is the same as the smallest cell that shares the face in which the variable is locate
what follows, the notatiod ", ..;"'AS will be used for control volumes around the velocity
variables, and ,..;NA Swill be for control volumes around the pressure.

3.4.2.Pressure correction algorithm.A method similar to the pressure-implicit with
splitting of operators (PISO) algorithm developed by Issa [27] is used to couple Egs. (11)
(12). This method is also similar in nature to the second-order projection method devels
by Bell et al.[28]. It allows the simulation of the low Reynolds number flows often see
in biological situations without an excessive penalty in the size of the time step. To de
this method in a finite volume formulation, two auxiliary velocities are defined based
Egs. (12)—(13) as

pn+1§0Vn+1 _ (,OT)V)n

At = _-7'-20”\,— Fgress'i' 6’-7:\(/)isc +A- Q)TCiSC +fv (14)
and
pn+1ﬁk+1vn+1 — (puV)" | f
At = _Fgonv - "Flrgiés"" 0 (aCUkJrl + F‘hSC) +d- O)ICiSC 1V,
(15)
where
Feow = Z (F_conv' ﬁ,ASI) (16)
faces
]:Dressz Z(F_press' ﬁ/ASI) (17)
faces
Fisc = Z(F_Visc . ﬁ/AS’) = acv + Fuisc (18)

faces

and a.v and Fisc are the diagonal and non-diagonal termsZAfs., respectively. The
superscripk is used since the auxiliary velocity must be corrected more than once in ot
to obtain a velocity ah + 1 which is very close to divergence-free.



356 AGRESAR ET AL.

Two types of correction equations are obtained. The first is obtained by subtrac
Eq. (14) from (15) ak = 0, the result of which is

(pn+lvn+l

I 0ac> @ - 1% = —(Jfgress— Firess- (19)

The second is derived by subtracting (15kdtom the same equation kt- 1. This gives

( pn+lv n+1

At - 6a0> (§k+l - 5k) == ('7::;:;5_ ',Flp()ress) +0 (F\fisc - F\hs_cl)~ (20)

Pressure equations are obtained by taking the discrete divergence of the correction
tions and enforcing continuity for ail, k > 1. The two pressure equations are

1
Z {CO (féress_ :Fgress) :

faces

1
Z {C_O (j:ls_rtelss_ fgress) ’

faces

>l

Aé} => (1°-nag (21)

faces

|

Ag} = Z {CiOQ(F\i(isc - F\i(i;cl) ’ ﬁAS}’ (22)

faces

where

pn+lvn+l
Co=|———0a|.
0 < At &

The algorithm consists of solving Egs. (14), (21), and (19) sequentially to obtain
and iterating Eqgs. (22) and (20) until either thg norm of the velocities and the pressure
converge to a certain criteria-10~° for the velocities and-10~* for the pressure) or until
the maximum number of iterations is reached (10 or fewer iterations produced good re
in the cases tried). For more details on this method see Issa [27]. Note that 8ettify
produces an explicit pressure correction method.

The matrices generated by this algorithm are solved using the package, SPARSKIT
veloped by Saad [29]. The modules forincomplete LU factorization and conjugate gradi
are used in this work.

3.4.3.Computational molecule and interpolationd=ar from refinement interfaces, the
computational molecules shown in Fig. 4 are used to formulate Egs. (14), (19), and
around the velocity control volumes. Using the notation in this figure, the flux terms for
x-component of the velocityu) around the control volume shown in Fig. 4a can be writte

as
2 2
Ue + U Uc + Uy
.'Fconvz{pe( 62 c> —Pc<cz>
T Pc + Pe+ Pne+ Pn Un + Uc Ve 1+ Uc
4 2 2
Ps + Pse+ Pe + Pc Uc + Us Use + Vs
— h 23
G [ [ SO

-'Fpress= (pe - pc)h (24)
Fuisc = acU + Fyisc, (25)
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FIG. 4. Computational molecules used in the flow solver: (a) variables needed to solve the equations f
(b) variables needed to solve the equationa/fdiThe shaded lines denote the control volumes.)

whereh is the length of any of the faces of the control volume, and the diagonal ¢
non-diagonal terms aFisc can be written as

Al = |:_2Me_2Hc_ (Mc+ﬂe+ﬂne+ﬂn> _ (Hs+ﬂse+l’«e+ﬂc>:|uc (26)

4 4

+ Ue + +
Fuisc = 2ptele + 2ptcUy, + <MC He 4H-ne Mn)(un + Ve — v¢)
_ (MS+MseIMe+MC>(_Us+Use—Us)~ (27)

The formulation of thex-component of Egs. (14), (19), and (20) is completed by settii
p at the node fou, to (pe + pc)/2 andV = h?. Similar expressions can be written for the
y-component of the velocity [30].

The equations for the pressure (Egs. (21) and (22)) are a composite of the terms all
defined. These equations are built by stepping through the faces of the control volum
the pressure, and setting the appropriate terms using the control volume of each vel
component encountered. For example, Eq. (21) can be written as

2ptc + 2pte + [ne+ tn + s + Use
4

(pe+ Pc)hﬁ
2At

1
+9{2/,Le+2uc+ }) (Ape — Apc)hp

+ p)h? 24+ e + Mne+ 2ttn + to + o [\
+((pn2£{c>v+9[2ﬂn+2ﬂc+ M T He Hne4ﬂn 123 Mn ])

x (Apn — Apo)hy — LHSy — LHSs = ulhy, 4 v2h, — RHSy — RHS, (28)

where theA in front of the pressure terms indicates the difference between the values at
iterations (time leveh andk iteration 1 in this case); artd,, h,, andh, are the sizes of one
of the faces of the control volumes around thev-, and p-nodes, respectively. The terms
for the east and north faces have been written explicitly (recall that only the east and r
faces are associated with each cell), whereas the remaining termsy (ILHSs, RHSy,
and RHS) are evaluated by constructing similar computational molecules centered af
west and south neighbors.
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FIG. 5. Interpolations of cell-centered variables: (a) interpolation to a location inside a cell; (b) interpolat
to a vertex.

Since all the discretized equations can be written in terms of the variables defined in
computational molecule, where the distance between each class of unknown is eqt
h (the length of a side of the appropriate control volume), this computational molecul
used as the basis for the flow solver. Near refinement interfaces, where the size of adj
control volumes varies, independent computational molecules are constructed with re:
to each of the components of the velocity, and interpolations are defined to obtain the mis
values. These interpolations have been divided into two main classes: (i) interpolations ¢
variables located at the cell centroid (pressure, viscosity, and density), and (ii) interpolat
of the variables located at the cell faces (kaendy-components of the velocity).

The first type of interpolation is sketched in Fig. 5. When the interpolated value lies ins
a computational cell, as in Fig. 5a, the three closest values that enclose the point of int
when connected (1, 2, and 3 in the figure) are used to form a triangular linear elemer
the interpolation. Instead of computing the shape functions for such an element, the rei
structure of the grids is used to simplify the expressions for the interpolations reducing
number of arithmetic operations to a linear interpolation to the vertex closest to the loca
of the interpolation followed by an average with the value at the cell centroid (Fig. 5a).
example, following the notation in Fig. 5a,

1

Pa = — (P3Sa + P2Sza) (29)
$3
1

Px = é(pl + Pa), (30)

wheres;j is the distance betweédnand j, which can be determined from the refinemen
levels of the respective cells. If cell 2 is at the same refinement level as cell 3pilien =
Sza/Se3 = 1/2. If cell 2 is more refined than cell 3, theg, /3 = 1/3 andsza /3 = 2/3.
Finally, if cell 2 is less refined than cell 3, theg,/s;3 = 2/3 andszy/S:3 = 1/3. Again,
due to the restrictions in refinement imposed by the grid-generation code, these are the
values the distance fractions can attain. Equations (29) and (30) produce an expressi
the interpolated value which is exactly the same as if the shape functions were used.
If the position of interpolation of the cell-centered variable lies at the vertex of a cell,
shown in Fig. 5b, the four cells sharing the vertex are used in the interpolation. The varis
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FIG. 6. Interpolations of face-centered variables: (a) interpolation to a location inside a cell using four no
(b) interpolation to a location inside a cell using three nodes; (c) interpolation along a face.

diagonal to each other are interpolated linearly to obtain two values at the vertex, anc
two values are averaged; i.e.,

1[/sas Si1 ) (5*4 S2 )]
== =P+ —ps)+ =P+ —ps)| 31
p 5 K s P1 s P3 o P2 S P4 (31)

This interpolation is consistent with the implementation of the interpolation within a ¢
defined above.

The interpolations of the unknowns located at the cell fanemn@v) can also be per-
formed in a combination of linear interpolations and averages. The most complicated
is sketched in Fig. 6a, where the interpolated value is found as follows:

Va = %Ul + %Uz (32)
S12 S12

Vp = %Ug =+ §v4 (33)
34 S34
Sox Sax

Vy = — U + — Up. 34
Sab a Sab b ( )

The rest of the cases are subsets of these operations (e.g., Figs. 6b and 6c). In the
where three values are used in the interpolation, as in Fig. 6b, the interpolation coinc
with that of a linear triangular element.

Similar interpolations are also used to transfer state variables from parent to childrer
vice versa in the adaptation of the grid. When a cell is unrefined the cell-centered varic
are interpolated using Eq. (31) (where 1, 2, 3, 4 correspond to the NW, SW, SE, NE chilc
respectively), and the face variables are interpolated using an equation similar to Eq. (3.
each face of the parent cell (where the values on the children’s faces which overlap wit|
parent’s faces are used in the interpolation). When a cell is refined, Egs. (29), (30) are
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FIG.7. Interpolations during grid adaptation: (a) refinement (arrows that do not begin at a node use informs
from neighboring cells); (b) unrefinement.

four times (once with respect to each vertex of the parent cell) to obtain the cell-centt
variables of the children, and equations similar to (32)—(34) (depending on the neigh
of the parent cell) are used to obtain the face variables of the children. These operatior
sketched in Fig. 7.

3.5. Boundary Conditions

The current capabilities of the code are such that the boundaries must align with
Cartesian grid; therefore, only vertical and horizontal boundaries are allowed. Due tc
staggered mesh arrangement, theomponent of the velocity has boundary values whic
lie on the vertical boundaries and are half a cell past horizontal ones, while the oppc
is true for they-component of the velocity. Pressure boundary values are needed at g
points half a cell past all the boundaries.

Velocity components which lie on the boundary are set to a constant at inflow and s
boundaries. At outflow and far field boundaries, these velocity components are evalu
in such a way that mass is conserved in the cell in which they lie. For the convective tel
the ghost values of the velocities at inflow and solid boundaries are computed so tt
linear interpolation with the closest internal value gives the value specified at the boun
(reflection boundary conditions). These values, however, are not used in the computati
the viscous terms to avoid deterioration in the global accuracy of the solution [31]; inste
the gradient of the velocity components at the wall is derived by using a second-or
one-sided difference approximation. Substitution into the central difference term usec
the viscous terms produces the following ghost valuesfor

2
AXz1 AXy  AXgp AXz1 AXap

AXgh  2AXgh [ AXon  AXgp
— — Vb,
AXqp AXoq AXip AXop b

<2Ang AXop Ang> 2Ang AXqp
Ug = - -

+P+ (35)

wherewy, v;, andv, are the values of thg-component of the velocity at the boundary,
a cell just inside the boundary, and the second interior cell in a direction normal to
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boundary, respectivelyyx;; is the distance between nodesnd j. A similar equation can
be written foru. Finally, the ghost values of the velocities at outflow and far field boundari
are set equal to the closest interior value. This is equivalent to saying that the gradie
the velocity normal to the boundary is equal to zero.

Since the equations for the auxiliary velocities (Egs. (14) and (15)) are consistent
the momentum equation (Eq. (2)), the boundary conditions described above are also
for the auxiliary velocities. Using this fact, the boundary conditions for the pressure at s
and inflow boundaries can be derived by setting up the correction equations (Egs. (19
(20)) at the boundary and canceling the appropriate terms. AssURfiing F\i‘igcl ~ Qatthe
boundaries, and that attiree0, pg = p1, thenthe pressure at the ghost cell can be set eq
totheinternal value. At outflow and far field boundaries, the value of the pressure is speci

The computational molecule of Fig. 4 requires ghost values for the density and
viscosity. These values are simply set equal to the value at the cell closest to the bour
Far from the interfaces, this corresponds to an extension of the domain. Near the interf
this corresponds to reflecting boundary conditions (in the problems studied, the interf
only approach solid boundaries).

The boundary conditions for the pressure and the velocity are computed implicitly.
is done by expressing the boundary values as linear functions of the internal variables,

N
Ubdry = 8o + Z a; Ui, (36)

i=1
whereu; are the internal variables aadare constant coefficients, and storing the coefficier
as well as pointers to the structures containing the internal variables (which also cor
pointers to the matrix location of the variables) during the evaluation of the bound
conditions. The boundary values are then directly incorporated into the algorithm descr
in the previous sections.

3.6. Extension to Axisymmetric Geometries
The discrete divergence of a quanti@y, in axisymmetric geometries (where the line o
symmetry isx = 0) can be written as
1
YV

> Q- nyrAS), (37)
faces

wherey; andy. are they-coordinates at the midpoint of the face and at the centroid
the control volume, respectively. Using this definition, the finite volume formulation of t
equations can easily be extended to axisymmetric geometries as follows: Egs. (11) anc
become

> @ nyiAS =0 (38)

faces

1_)‘ V n+1 _ ,‘—) V n _ _
(ovycV) N (pvycV) - _Z (Feonv- Y A" — Z (F press: ﬁyfAS)”“

faces faces
+0> " (Fuse NYsA9™ 4+ (1-0) > (Fyise - Nyr A"
faces faces

+ fV 4+ Hv, (39)
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where

0
H= PntPc (tn + pmo)ve | - (40)
2 Ve

With respect to the derivation of the PISO algorithm described in Section 3.4.2, the pres
source team is included i press While the velocity source term is treated &sisc and is
included in the diagonal terma,. With this redefinition of terms, and including in the
time derivative terms ang; in the summation of fluxes, Egs. (14), (19), and (20) hav
the same form as before. The pressure equations (21), (22) include an additi@sma
multiplier for the terms in the summations.

To generalize the code, the algorithm was actually implemented including all of the te
needed for the axisymmetric equations. To simulate two-dimensional probjerandy,
are set to 1 andti is set to [3].

The expression for the surface force can also be easily extended to axisymmetric ge
tries. For example, Eqg. (5) becomes

~ 1 T
fs = [0ay)is— (@eyio—oeAs ] (41)

C

4. VALIDATION AND RESULTS

In this section the results of simulations of several problems are presented. The
two problems are the deformation of a two-dimensional drop under shear flow and
oscillations of an axisymmetric drop driven by surface tension. These problems are |
to validate the code and to provide estimates for the efficiency and convergence beh
of the method. For these test cases, the surface force is due to the interface between
and is defined and discretized as in Egs. (4), (5), and (41). The last two problems &
typical single-cell-mechanics experiment (modeled as axisymmetric) and the adhesic
two biological cells under shear flow (modeled as two-dimensional). The resultant sur
force for each of these cases will be described in Sections 4.3 and 4.4. These two prol
demonstrate the capabilities of the method to study the mechanics and adhesion of biolc
cells.

4.1. Deformation of a 2-D Drop under Shear

In this problem, a two-dimensional drop deforms in a linear flow field caused by
relative motion of parallel walls (the effects of gravity are neglected). The drop is initia
circular and the flow field is generated by moving the upper wall while keeping the bott
one stationary. The east and west boundaries are periodic. This test case is relevant
study of cell adhesion since the same boundary conditions can be used to model the ps
plate flow chambers commonly used experimentally. The parameters of the problemn
set as follows: the velocity of the upper wall, = 3 cm/s; the density ratio between the
drop and the outer fluidpy/ 0o =2, the viscosity ratio between the drop and the oute
fluid, uq/uo = 1; the surface tension coefficient,= 1 g/¢; and the initial radius of the
drop,rq =1cm. The computational domain is a square with<x <4 and—4<y <4.
On output, the shape of the drop, the pressure contours, and the contourg-obthponent
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of the velocity {) are examined. Thg-component of the velocity was chosen instead c
the speed because the drop distorts the linear velocity profile only slightly, and the eff
are best seen in thecomponent.

The results from this problem were compared to the results using a similar met
implemented on structured grids (this latter implementation has been validated and
extensively [e.g., [15, 32, 33]]). The problem was run on each code using identical grid
128 by 128 cells (all the cells in the code of this work were set to a refinement level o
on a square domain 8 cm in length, and excellent agreement was found between the r
[33]. The adaptively refined code was found to use about 4 times more computational
per cell than the structured code due to the overhead of local refinement. However, ¢
the adaptively refined code is capable of achieving similar results as the structured
with about 16 times fewer computational cells (as will be discussed in the next paragr
the overall efficiency of the adaptively refined code is about 4 times better.

The effects of refinement on the solution were studied by simulating this problem on
different grids: one grid with local refinement near the interface (largest refinement l¢
of 8, and smallest of 5), and two without (a fine mesh where all the cells are at refinen
level 8, and a coarse mesh where the cells are at 5). The coarse mesh has 256 cel
locally refined mesh contains 998, and the fine mesh has 16,384. These grids are s
in Fig. 8. The corresponding pressure andelocity contours at time= 2.4 s are shown
in Fig. 9. This figure shows how the solution obtained using the refined mesh is m
closer to the solution obtained using the finer mesh than the coarser mesh, partict
near the location of highest curvature in the drop. The pressure is distorted slightly by
refinement interfaces, where there is a slight loss of consistency in the discretizatic
second derivatives due to the linear interpolations used. The value of the pressure gra
however, is only affected locally (right at the refinement interface), and the velocities are
affected significantly. The inconsistency at the refinement interfaces could be correcte
using quadratic interpolations instead of linear, but these interpolations would compli
the setup, would have to be linearized for the PISO algorithm, and could lead to posit
problems [34].

Figure 10 shows an overlay of the shape of the drops at#in2et s for each grid. The
shape obtained using the coarser mesh is more elongated, while the other two are &
indistinguishable.

4.2. Oscillating Drop

In this problem, the surface of a drop is perturbed and oscillates due to surface ter
forces. These oscillations have been analyzed mathematically by Lamb [35]. To simt
the problem, the drop was initialized to an ellipsoid and far field conditions were enforce
all boundaries of the domain. The initial conditions selected correspond to the simplest
most important mode of oscillation (a wave number of two). This problem has been L
as atest case in the literature by others modeling multiple fluids [18, 32]. The existenc
an analytical solution provides a rigorous test especially for the interface tracking met
and its implementation. The parameters were set as follows: the density inside the «
pi =1 glcn?; the density of the external fluigh, = 0.01 g/cn?; the viscosity inside the
drop, ui =0.01 poises (g/cm s); the viscosity of the external fluig—= 0.001 poises, the
undisturbed radius of the droR =1 cm; and the amplitude of the perturbatidxs=0.03
cm. This problem was solved in a square computational domain-wth <x < 2.4 and
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FIG. 8. Grids used to test the advantages of using refined grids (a&tithé s): (a) RL= 5, 5 (all cells are at
refinement level 5h = 0.5); (b) RL= 5, 8 (the refinement level varies from 5 totByaries from 0.5 to 0.0625);
and (c) RL= 8, 8 (all cells are at refinement levell8= 0.0625).

—2.4<y <24, using adaptively refined meshes similar to that shown in Fig. 8b (but w
different refinement levels).

The position of the highest point on the drop was tracked as a function of time, and
results using a 4, 8 mesh for an axisymmetric drop wita 5 g/ (dyn/cm) are shown in
Fig. 11. The period of the oscillations was computed by averaging the distances bet\
peaks in this figure. The results for two-dimensional and axisymmetric drops with differ
surface tension coefficients (2 §/and 5 g/4) are compared to the analytical solutions ir
Table 1. As seen in this table, the numerical solutions are in excellent agreement witt
analytical ones.
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FIG. 9. Pressure ang-velocity contours obtained using a 5, 5 grid (top row), a 5, 8 grid (middle row), ar
an 8, 8 grid (bottom row); time= 2.4 s.
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FIG. 10. Shapes of the drop at time 2.4 s obtained using a 5, 5 grid, a 5, 8 grid, and an 8, 8 grid.
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FIG. 11. Amplitude, A(t), of the oscillations of a drop as a function of time for an axisymmetric drop wit
o =5¢g/g. The remaining parameters apg=1g/cn¥, p, =0.01 g/cn?, u; =0.01 poisesu,=0.001 poises,
R=1cm, andA(0) =0.03cm.

This test case was next used to examine the convergence rate of the solution with resg
mesh size. In order to isolate the effect of the mesh size on the accuracy, the time step w
to a constant£ 0.01 s). The two-dimensional problem with= 5 g/s was run on four dif-
ferent meshes, all with a lowest refinement level of 4, and the highest refinement level ve
from 5 to 8. The period of the oscillations computed on each grid, the relative error, anc
mesh size are tabulated on Table 2. ThgJagthe error is plotted as a function of the lgg
of a measure of the mesh sitgpprox= (NUuMber of cells ~/2, in Fig. 12. This figure shows
that the error decreases monotonically with decreasing mesh size and that the conver
of the solution with respect to mesh size is close to linear (except for the rightmost :
ment, the endpoint of which is from a very coarse mesh). This convergence behavior i
best typically seen when interfaces are resolved on stationary grids. Tracking the intel
explicitly reduces the error, but does not change the order. The inconsistencies near r
ment interfaces discussed in the previous section also contribute to a decrease in the c
convergence rate of the solution. However, this drawback is offset by the fact that the <
degree of accuracy can be obtained with significantly fewer cells using local refinemel

4.3. Simulation of Cell-Entry Micropipet Experiment

One of the most common techniques used to study the deformation of cells is the cell-¢
micropipet assay. This assay consists of pulling a portion of the cell or the entire cell in

TABLE 1
Comparison of the Period of the Oscillations of a Drop Obtained from
the Simulations to the Analytical Solutions [35]

U(g/sz) )Lnumerical )Lanalytica\ Relative error

Two-dimensional

2 1.847 1814 1.8%
5 1.161 1.147 1.2%
Axisymmetric
2 1.605 1.576 1.8%

5 1.012 0.997 1.5%
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TABLE 2
Error in the Period of the Oscillations of a Two-Dimensional Drop as a Function
of Mesh Size Qanalytical = 1.147, 0 =5 g/, hynax = 0.3125)

Refinement Number of Napprox Relative
levels cells = (#celly~1/2 Nmin Anumerical error (%)
4,5 160 0.0790569 0.15625 1.244 8.45
4,6 304 0.0573498 0.078125 1.174 2.35
4,7 676 0.0384577 0.039063 1.166 1.66
4,8 1456 0.0262106 0.019531 1.161 1.22

micropipet of set diameter with a constant suction pressure. The experiments are record
video, and the distance between the leading edge of the cell and the tip of the pipet (proje
length orL ) is plotted as a function of time. From this plot and by assuming a constitut
relation between applied stress and cellular deformation, mechanical parameters fc
cell can be calculated. This technique has been used in conjunction with several mod
study artificial lipid vesicles [11] and several types of cells including red blood cells [1
leukocytes (neutrophils [36—39] and granulocytes [40]), and lymphocytes [41].

This assay is simulated in axisymmetric coordinates using parallel walls to represen
micropipet and initializing the cell to a sphere (cell without a nucleus) or two concen
spheres (cell with a nucleus) near the entrance of the pipet. Outflow boundary condi
are enforced at the end of pipet and far field conditions are implemented at the remal
boundaries. The resultant force on the cellular membranes is computed by assumin
membranes hold isotropic tensions only, i.e.,

AA
o=To+K—r, 42
0 ! (42)
whereTg represents the interfacial tension due to the phase boundary between hydropl

membrane components and water based surroundings, and the second term is due

-0.8 |
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L
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Loglﬂ {hsppmx)

FIG. 12. Logarithmic plot of the error in the period of the oscillations as a function of an approximate me

size: (number of cells}’2. The number of cells for the (4, 5), (4, 6), (4, 7), and 4, 8 grids are 160, 304, 676, ¢
1456, respectively.
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elasticity of the plasma membrane and associated cortex §423. the isothermal area
compressibility modulus, and A/ A is the fractional area change of the membrane wit
respect to the unstressed arég, This unstressed area is set by the initial discretizatic
of the membrane. Several biological membranes have been successfully modeled
Eq. (42), at least in some circumstances [11, 39]. The resultant surface force is then

(0 &)
ds

FS = fAmech = ds (43)
and is discretized using Eq. (41). A similar model was used by Jan to study the effec
surfactants in contaminated bubbles [26].

The parameters in the simulations are set in accordance with the experiments of Nee
and Hochmuth [43]: the cell radius ig4n, the pipet radius is 2Zm, and suction pressures
of 1 and 2 kPa are used. The density of all fluids is set to a congtani,0’g/cn? (this
constant is seven orders of magnitude higher than the observed density to allow the u
a larger time step, but since the flow is near the Stokes limit, the effect of this larger der
on the solution is minimal [30]). The viscosity of the outer media is set to four orders
magnitude smaller than the cytoplasmic viscogitysopiasm(larger viscosity ratios did not
change the solution significantly [30]).

Three mechanical models for the cell are used: (a) a Newtonian fluid surrounded by a
stressed cortical shelk(=0), (b) a Newtonian fluid surrounded by an elastic membran
and (c) a Newtonian fluid with a more viscous nucleus inside. The first mechanical mc
has been used by experimentalists to analyze micropipet data for leukocytes [39, 40, 43
it predicts the behavior of these cells at large deformations, but not at small deformati
Parameters on the same order as the values obtained by these experimentalists were u
the first run:To = 0.04 dyn/cm, anglcytopiasm= 10° dyn s/cnt. Figure 13 shows snapshots
in time of the pressure and speed contours of a cell entering a pipet with a suction pressit
2 kPa using this model. As expected, two flow regimes are observed. In the first regime (
= 0.003 sin Fig. 13) the cell is not in contact with the pipet and the flow is controlled by t
fluid outside the cell. A pressure gradient exists inside the pipet, and the velocity of the f
is a maximum in the gap between the walls at the tip of the pipet and the cell. When the
makes contact with the pipet, the flow inside the pipet becomes plugged and gains co
of the problem (time= 0.03 s). The experimental data are obtained once this second fl
regime is established. The pressure of the fluid inside the pipet (outside the cell) becc
constant, a pressure gradient develops inside the cell, and the maximum pressure oc
the tip of the pipet where the cell makes contact; the maximum speed decreases and th
between the pipet wall and the cell surface is minimal. These trends continue throug
the remaining frames of Fig. 13. At later times, contrary to experimental evidence (e
[43]), the trailing edge of the cell bulges into the pipet while a peripheral portion of t
cell remains near the tip. Figure 14 shows how a cell with a higher surface tension et
the pipet entirely as is seen experimentally [(e.g., [43]). However, the surface tensior
leukocytes has been measured to be as low as in the simulation of Fig. 13, suggestin
the Newtonian drop model does not completely capture the mechanical behavior of t
cells even at large deformation.

One source of numerical error in these simulations is the current implementation of
velocity adjustments performed to avoid contact of the interface with the wall (discus
in Section 3.3). At each time step, these velocity adjustments cause a small loss i
volume of the cell (about 0.0001%). However, due to the large number of times that tt
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FIG. 13. Pressure (left) and speed (right) contours of a cell modeled as a Newtonian drop entering a
with a suction pressure of 1 kPa. The pressure is in units ofmngds) = 10 kPa and the speed has units of
um/ds. The mechanical parameters of the cellfare 0.04 dyne/cmK = 0, andicyopiasm= 10°dyne s/cr. The
grid used refinement levels of 6, 8, and 9 (6 for the background, 8 for intersected cells, and 9 for proximity o

interface to the pipet).



370

AGRESAR ET AL.
10. T
EEEI n i
WFELL ]
T M T |
y - L i
R e IBEEEEE R
.
~10. 1§
time=0.01 s
1% T T
! -
! ] J
[ HE 1
= " T
= T
anss chEi ae:
1 12
-10, j
time=0.1s
10. T g |
|
i
yH 1‘
|
10, TT17T i
time=0.5s
10. T
{ 1T
EEEEEESEEmAES N ]
HHH
y T = .
H I
T 1 T
f I
i | :
i T I
X
time=2.0 s

FIG. 14. Cell modeled as a Newtonian drop completely entering a pipet with a suction pressure of 2.5 |
The mechanical parameters of the cell @e=1dyne/cm,K =0, andieyopasm= 10° dynes/cmd. RL=6, 8, 9
(6 for the background, 8 for intersected cells, and 9 for proximity of the interface to the pipet).
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FIG. 15. Projection length vs time for a cell modeled as a Newtonian drop (mechanical parameters ¢
Fig. 13) aspirated at two different suction pressures: (a) 1 kPa; (b) 2 kPa.

operations are performed in the micropipet simulations, this error accumulates leadir
volume losses of about 15%. Decreasing the size of the smallest computational cells
ones between the interface and the pipet) by half reduces this volume loss by more
50%. To avoid increasing the number of computational cells, the velocity adjustment:
the interface must be communicated to the incompressible fluids. One way to achieve
is described in Section 3.3.

The Newtonian-drop model is used to compare the effects of suction pressure or
projection length of the cell into the pipet (Fig. 15). Figure 15 shows that doubling of
suction pressure increases the rate of entry by about two. This trend was seen experime
by Needham and Hochmuth [43].

The other two mechanical models were compared to the Newtonian-drop model u
a suction pressure of 2 kPa. In the model with the elastic membrane the parametel
To=0.04 dyn/cm,K =100 dyn/cm angcytoplasm= 10° dyn s/cnt. In the model of a cell
with a nucleus the parameters for the cytoplasm and external membrapg,gggsm=
10? dyn s/cnt, and To= K =0.04 dyn/cm; and the parameters for the nucleus and t
nuclear membrane ayg,cieus= 10° dyn s/cnf, To = 0.04 dyn/cm anK = 2 dyn/cm. The
value of the elastic modulus for the second model is on the order of the values measure
lipid bilayers and red blood cells [11]. The parameters in the last model are on the ordk
those measured for lymphocytes [41]. The different mechanical models affect both the s
of the cells and the contact angle between the tip of the pipet and the outer portion o
cell, as seenin Fig. 16. Figure 17 shows the projection length of the cell as a function of !
for the three models. As shown in this figure, compared to the Newtonian-drop mode
elasticity of the membrane retards the entry of the cell into the pipet and this effect incre
as the cell becomes more elongated. This behavior is similar to the behavior of red b
cells entering a pipet [44]. The cell with aless viscous cytoplasm and a more viscous nut
entersthe pipetmore rapidly initially, and slows down as the nucleus starts deforming int
pipet. These changes in rate of entry are observed in micropipet experiments with leuko
([e.g., [43]). However, due to the low surface tension and the lower cytoplasmic viscosit
this model, at later times a portion of the cell extends past the tip outside the pipet (con
to experimental observations). There is evidence that in some cells cytoplasmic elen
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FIG. 16. Comparison of the shape of a cell entering a micropipet with a suction pressure of 2 kPa u
three different mechanical models: (a) a Newtonian fluid with constant surface tensicaR8, 9); (b) a
Newtonian fluid enclosed by an elastic membrane £R1L, 8, 9); and (c) a Newtonian fluid with a more viscous
nucleus (RL=7, 8, 10; a refinement level of 10 is also used for proximity of the interfaces). (See text for probl
parameters.)

connect the outer membrane to the nuclear membrane [45] and such elements could pi
the outer membrane from extending outside the pipet. These cytoplasmic elements col
incorporated in the methods of this paper using elastic links which connect discrete pc
on the cell membrane to discrete points on the nuclear membrane.

4.4. Simulation of Cells Adhering Under Flow

Specific cell adhesion frequently occurs in circulatory systems. In this section a t
dimensional version of this case is presented. As mentioned in the Introduction, biolog
cells adhere by forming bonds between mobile membrane molecules, while the memb
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FIG. 17. Comparison of the projection length of a cell entering a pipet as a function of time using th
different mechanical models (the letters correspond to the models in Fig. 16).

deform and colloidal forces act to repel the cells. The resultant surface force for each ¢
]?S = fAmech"‘ fAbonds,‘i‘ fnSa (44)

where f mechis due to the membrane’s resistance to deformation (as in Egs. (42) and (¢
f bonais due to molecular bonds arfdis results from the colloidal interactions. The numbe
of bonds per segment is found by discretizing the reaction—diffusion equations on
interfaces, using reaction rates which are functions of the distance between the memb
(as proposed by Demlat al.[6]). Since the membranes move arbitrarily and are discretiz.
independently of one another, a segment from one membrane can interact with more
one segment on the other membrane. Hence, the reaction term and the non-specific
are computed by visiting all the segments on the other membrane; if the distance bet
the centroids of the two segments,) is less than a thresholdi,), the segment pair is
given the opportunity to interact. If bonds form during the interaction, a link is establist
between the segments. The reaction term used in the diffusion-reaction equations
sum over all the segments on the other membrane. The force exerted by each bond li
each segment is computed as

foonds = Nikkb (|Tm| — o) Lmik , (45)
Iy |

wherenjy is the number of bonds between ttte segment of one membrane and kitle
segment of the othety, is a spring constant assigned to the bdng], is a vector from the
centroid of tha th segment of one membrane to the centroid okthesegment of the other,
andly is the pre-stressed length of the bond. The idea of treating molecular bonds as sp
was proposed by Bedt al.[3] and has been used successfully by many other research
The force due to the non-specific interactions is computed as

- 1 1 I I
frg = —/\SS(_— + —) exp(— | m'k|> _m'KzAs, (46)
||mik| 8 8 || mik|

wheres is a measure of the combined thickness of the glycocalyx of both cells,ginl
a measure of the ease with which the polymer layer between the cells can be compre
This expression is also due to Betlal.[3]. The total adhesive force on thth segment is
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TABLE 3
Mechanical Properties for the Cells in the Simulations of Cell Adhesion

Cell 1 (lower) Nucleus of cell 1 Cell 2 (upper) Nucleus of cell 2

Run " To K )2 To K " To K " To K

1 0.2 100 100 1.0 200 200 0.2 100 100 1.0 200 20(
2 0.2 50 50 — — — 0.2 150 150 1.0 200 200

Note The units of viscosity are ngkm ms) & 102 poises); the units foF, andK are ng/m&(= 102 dyne/cm).

computed by summing the contributions of all other segments on the opposite memb
(summing ovek). For details on the implementation of this procedure see [30].

The adhesion of two deformable cells under shear flow is simulated using a sq
domain 4Qumin length, with periodic east and left boundaries. No-slip boundary conditic
are enforced at the north and south boundaries, where the velocities are-s2% snd
25um/ms, respectively. The resulting shear is comparable to that in an arteriole [
The cells are initialized to circlesdm in radius and in very close proximity so moleculal
interactions can commence immediately (i.e., @p) < lp). One cellis placed higher than
the other so the velocity gradient moves them past one another. Two cell pairs are exam
(i) identical nucleated cells, and (ii) one nucleated cell with a more flaccid cell lackin
nucleus. The mechanical properties of the cells and their nuclei are listed in Table 3.
density of all fluids is set to.Q ng jum3(= 100 g/cn¥) and the viscosity of the immersing
fluid is set to 01 ngAxm ms (= 10 dyn s/crd). The adhesion parameters (reaction rate
spring parameters for the bonds, receptor number, diffusivity, colloidal parameters)
set to typical values from the literature adjusted for two-dimensional computations w
appropriate.

Figure 18 shows a close-up, near the area of contact, of the adaptively refined mesh
for run 2 (a similar mesh was used for the first run). The computational cells in the are
contact between the cells are 128 times smaller than the largest cells in the grid.

Figure 19 shows the evolution of the adhesion for the two cell pairs. As expected, the s
flow causes the cells to move past one another, elongate, and eventually detach. Figu
and 21 show plots of the bond density as a function of a coordinate along the membra
the cells at different times for runs 1 and 2, respectively. The figures show that, as expe
the density of the bonds in a localized region of the surfaces of the cell (the contact ¢
increases as time passes. The curves for the two cells in run 1 are almost identical. The
distribution is almost symmetric, with the majority of bonds located near the center of
area of contact. The contact area is smallest, while the maximum concentration of b
is largest at time= 0.8 s; by time=1.0 s all bonds have detached. The curves for the ce
in run 2, on the other hand, are significantly different from one another. In this case,
distribution of bonds shifts with time toward one side of the contact area, and the majc
of the bonds in the more flaccid cell concentrate in a very small portion of the membre
Attime = 1 s, the cells are still attached, but the contact area has begun to decrease.

Figure 22 shows the total number of bonds as a function of time for the two runs. Initi
(time < 0.1 ms), the total number of bonds is the same for the two cell pairs until the ce
have deformed significantly and the cell mechanics begins to play a role. At this time,
curve for the cells with different mechanical properties lags the other. In both curves,
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FIG. 18. Representative grid used for the simulations of cell adhesion zoomed near the area of contac

number of bonds increases to a maximum (the same value for both curves), after wh
sharp decrease is observed. Also in both cases, the rate of bond increase is non-mon
The sharpest increase in this rate seems to correspond to the time when the shear be
pull apart the cells (compare the frames in the third row of Fig. 19). However, more stu
are needed to determine the cause of this behavior.

5. CONCLUSIONS

One of the major goals of investigators in the area of cell adhesion is to establi
quantitative relationship between molecular parameters and the outcome of cell adhe
Three major difficulties complicate the search for such a relationship: (i) the relevanc
many cellular and extracellular events (external forces, cell mechanics and deforma
diffusion and specific binding of molecules, and non-specific interactions); (ii) the differ
length scales on which these events occur; and (iii) uncertainties in the mechanics o
deformation. Similarly, one of the major goals of researchers studying cell mechanics
elucidate the constitutive equations describing the relationship between the forces ex
enced by cells and their deformation. A major difficulty encountered by these researc
is that the analysis of experimental data requagsiori knowledge of this constitutive
relationship.

A multi-fluid code with adaptive refinement, staggered variable arrangement, anc
bitrarily deforming fronts tracked with a Lagrangian—Eulerian method was develope
specifically address those difficulties. The generation of different mechanical models
the cell is allowed by a modular treatment of membrane mechanics and fluid bodies.
method was validated with a drop deforming in shear and the oscillations on the surface
drop. Results agreed with other numerical results and analytical solutions. While thorc
convergence rate and efficiency tests were not performed, they are sufficient to establi
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FIG. 19. Evolution of the adhesion of two cell pairs deforming under shear: (a) identical nucleated c
(run 1); (b) a nucleated cell with higher surface tension and elastic modulus (top) and a cell with no nucleus
lower surface tension (bottom) (run 2). RL6, 9, 12 (6 for the background, 9 for intersected cells, and 12 fc
proximity of the interfaces).
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FIG. 20. Temporal evolution of the bond density on the surfaces of two identical cells adhering under s
(run 1).sis a coordinate along the length of the membrane of each cell, beginnéhg-a on the undeformed
cell and increasing in a counterclockwise direction (for clarity, the curves for each cell were slightly shifte
align the peaks). The curves on the left correspond to the lower cell and the curves on the right are for the
cell. Each curve is marked with the time in ms.

overall consistency of the method and the net efficiency benefit of local refinement. M
rigorous testing of these elements for the grid generation methods used in this work
been done by others [22, 23].

Cell-entry micropipet experiments (a common tool for studying cell mechanics) «
the adhesion of cells under flow (a common situation encountered both experimen
and under physiological conditions) were simulated to exemplify the capabilities of
code. Three very different models for the cell mechanics were analyzed with only mi
changes to the code. The different models affect both the shape and the rate of
of cells into a micropipet. The elasticity of the membrane decreases the rate of entt
the cell into the pipet, and this decrease continues as the cell becomes more elong
This behavior agrees qualitatively with that seen for red blood cells. The presence

400 | I
i
NS
(#/ um) o0 | 4,3 [;{i{
TR A
0 . '}/1 AN J A .
3 4 5 6§ 16 17 18 19

s (pum)

FIG. 21. Temporal evolution of the bond density on the surfaces of two different cells adhering under sl
(run 2).sis a coordinate along the membrane as described in Fig. 20.
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FIG.22. Comparison of the total number of bonds as a function of time during the adhesion of (a) two ident
cells (run 1), and (b) cells with different mechanical properties (run 2).

more viscous nucleus causes a non-monotonic rate of entry of the cell into the pl
This behavior agrees qualitatively with that seen for neutrophils. The evolution of
shape of the cell as it enters the pipet, as well as the rate of entry of the cell into
pipet, can be compared directly with experimental data. In addition, the code provi
information about the spatial variations in fluid pressure and velocity that is not curre!
available from experimental methods, but that agrees with the expected flow patterns c
problem.

The simulations in Section 4.4 show the capabilities of the code as a tool to study
adhesion. The code computes the number and distribution of molecular bonds on the
surface, the distribution of free molecules, and the shape of the cell at every time
In addition, the code provides information about the spatial variation in pressure and f
velocity (results not shown). A relationship between events occurring on the scale of the
diameter and those occurring at the gap between the cells has been successfully estab
For the parameters tried, the mechanical properties of the cells were shown to affec
temporal evolution of the contact area, as well as the total number of bonds betweel
two cells at a given time. This latter effect is very important since the number of bol
can determine the chemical signal between the cells and, therefore, the subsequent c
response.

This method can be used to study the passive deformation of specific cells and
an appropriate mechanical model. It can be used to decide when simple models fol
adhesion are valid and will allow the impact of cell deformation on detachment force tc
determined. Finally, the method can be used to generate information about transmem
molecular bonds from simple “macroscopic” adhesion assays (e.g., cell separation in ¢
flow).
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